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Abstract. We study the linear conductance of single electron devices showing Coulomb blockade phenom-
ena. Our approach is based on a formally exact path integral representation describing electron tunneling
nonperturbatively. The electromagnetic environment of the device is treated in terms of the Caldeira-
Leggett model. We obtain the linear conductance from the Kubo formula leading to a formally exact
expression which is evaluated in the semiclassical limit. Specifically we consider three models. First, the
influence of an electromagnetic environment of arbitrary impedance on a single tunnel junction is studied
focusing on the limits of large tunneling conductance and high to moderately low temperatures. The pre-
dictions are compared with recent experimental data. Second, the conductance of an array of N tunnel
junctions is determined in dependence on the length N of the array and the environmental impedance.
Finally, we consider a single electron transistor and compare our results for large tunneling conductance
with experimental findings.

PACS. 73.23.Hk Coulomb blockade; single-electron tunneling – 73.40.Gk Tunneling – 73.40.Rw Metal-
insulator-metal structures

1 Introduction

Tunneling of electrons in nanostructures is strongly af-
fected by Coulomb repulsion. In systems containing metal-
lic tunnel junctions the interaction can be described by
the charging energy [1] EC = e2/2C expressed in terms
of a geometrical capacitance C. For weak tunneling and
temperatures well below EC/kB, tunneling is suppressed
by the Coulomb blockade effect. This regime is well ex-
plored experimentally [2–5], and the phenomena observed
can be explained theoretically [6–10] by means of pertur-
bation theory in the tunneling strength which is character-
ized by the classical high temperature tunneling conduc-
tance GT. This approach breaks down for conductances
comparable to or even larger than the conductance quan-
tum GK = e2/h. When using these devices, e.g. as highly
sensitive electrometers [11], in detectors [12], or for ther-
mometry [13], a large current signal is desirable mean-
ing large tunneling conductance. However, higher order
processes such as cotunneling [14,15] lead to a smear-
ing of Coulomb blockade phenomena and a compromise
must be found in practice. While the strong tunneling
regime has been explored extensively by recent experi-
ments [16–19], theoretical predictions remain limited. The
theoretical work roughly splits into two groups. On the one
hand, higher order perturbative results [20–24] were suc-
cessful in explaining some of the recent experimental data,
yet, the analysis typically is restricted to conductances at
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most of order GK. Based on the diagrammatic expansion,
partial resummation techniques were used to obtain non-
perturbative results [25–28], however, for a restricted set
of charge states. The arbitrary cutoff necessary in these
latter theories limits their use for direct comparison with
experimental findings. Further progress can be made by
using perturbative renormalization group techniques [29,
30]. Apart from these approaches based on diagrams gen-
erated by treating tunneling as a perturbation, a formally
exact path integral expression [31] including all orders in
the tunneling conductance may serve as a starting point
for analytical predictions [32–36] and numerical calcula-
tions [37–39]. While perturbation theory in the tunnel-
ing term usually starts from states with definite electric
charge, this latter approach employs the canonically con-
jugate phase variable and thus is well adapted to situations
where the charge is smeared by thermal or quantum fluc-
tuations. In this work we use the path integral approach to
determine the linear conductance of single electron devices
in the semiclassical limit. Some limiting cases of the results
presented here were published in short form previously
[40–42]. Here we give a fuller account of the approach and
apply it to a larger variety of systems. New results are ob-
tained for the frequency dependent conductance of a single
tunnel junction embedded in an electromagnetic environ-
ment where we explicitly discuss the limit of a large tunnel
conductance and low temperatures. Further, the approach
has been extended to an array of junctions where we focus
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on the dependence of the conductance on array length and
environment.

The paper is organized as follows: in Section 2 we intro-
duce the Hamiltonians of a tunnel junction and of the elec-
tromagnetic environment, respectively. We then explain
the general method of calculating the linear conductance
from the Kubo formula with the help of a generating func-
tional. In Section 3 the case of a single tunnel junction
embedded in an electromagnetic environment of arbitrary
impedance is considered. We use this example to derive the
effective action characterizing the generating functional
which is employed also in subsequent sections with ad-
equate generalizations. We evaluate the conductance in
the semiclassical limit appropriate for high temperatures
and/or large tunneling conductance and compare the re-
sults with experimental findings by Joyez et al. [17] and by
Farhangfar et al. [18]. As a first extension of the method,
we consider in Section 4 a linear array of tunnel junc-
tions embedded in an electromagnetic environment. The
conductance of the array is determined in the high tem-
perature limit. Specifically, we study the effect of the envi-
ronmental impedance on the conductance and show that
with increasing length of the array the influence of the
environment is strongly suppressed. In Section 5 we turn
to a single electron transistor (SET). Here, we go beyond
leading order in the semiclassical expansion and determine
the conductance in dependence on the gate voltage. The
findings are compared with experimental data by Joyez
et al. [16] for SETs in the strong tunneling regime. We
conclude and discuss possible extensions in Section 6.

2 Model and general method

In this section we introduce the Hamiltonian for a sin-
gle tunnel junction and model the electromagnetic envi-
ronment in terms of a set of LC circuits. A metal-oxide
layer-metal tunnel junction consists of two metallic leads
separated by a thin oxide layer [1,43]. Provided the screen-
ing length in the metal is small compared to typical elec-
trode and oxide barrier dimensions, one may introduce a
geometrical capacitance C. The energy shift for an elec-
tron tunneling from one lead to the other is determined
by the charging energy EC = e2/2C. The corresponding
Coulomb Hamiltonian reads

HC(Q) =
Q2

2C
, (1)

where Q is the charge operator on the capacitance. The
leads are described by Fermi–liquid theory as free quasi-
particles

Hqp =
∑
kσ

εkσa
†
kσakσ +

∑
qσ

εqσa
†
qσaqσ, (2)

where the εpσ are quasiparticle energies, and a†pσ and apσ
are creation and annihilation operators for states on the
two electrodes, respectively. The indices p = k, q are lon-
gitudinal quantum numbers and σ is the channel index in-
cluding transversal and spin quantum numbers. Provided

the tunneling amplitudes are small, we may describe bar-
rier transmission by a tunneling Hamiltonian [1,44]

HT(ϕ) =
∑
kqσ

(
tkqσa

†
kσaqσΛ+ H.c.

)
, (3)

preserving the channel index σ. Here tkqσ is the tun-
neling amplitude and Λ the charge shift operator obey-
ing Λ†QΛ = Q + e. Defining a conjugate phase ϕ by
[Q,ϕ] = ie, we may write

Λ = exp(−iϕ). (4)

We mention that the conventional form of the tunnel-
ing Hamiltonian without an operator Λ, see e.g. [31], can
be obtained via an unitary transformation. However, the
form (3) is more convenient when Coulomb charging ef-
fects are relevant. The total Hamiltonian of a tunnel junc-
tion then reads

HJ(Q,ϕ) = HC(Q) +Hqp +HT(ϕ), (5)

where the dependence on the charge and conjugate phase
operators is made explicit to emphasize the similarity
between the charging energy and a kinetic energy and
between the tunneling Hamiltonian and an effective po-
tential energy.

The electromagnetic environment can be described by
a Caldeira-Leggett model [45] as a linear combination of
LC circuits

Hem(ϕ) =
N∑
n=1

[
Q2
n

2Cn
+

1
2Ln

(
~
e

)2

(ϕ− φn)2

]
, (6)

coupled to the phase operator ϕ of the device. The param-
eters of the LC-circuits are related to the environmental
admittance by

Y (ω) =
N∑
n=1

π

Ln
[δ(ω + ωn) + δ(ω − ωn)] , (7)

where the ωn = 1/
√
LnCn are the eigenfrequencies of

the oscillators. A single electron tunneling device consists
of tunnel junctions, capacitances, and admittances. The
Hamiltonian of this system can be constituted from the
elements discussed above. Then, the bosonic degrees of
freedom of the admittance and the fermionic degrees of
freedom of the electrodes may be traced out. In the next
section we exemplarily derive the Hamiltonian and the
effective action for a tunnel junction embedded in an en-
vironment of arbitrary impedance.

Specifically, in this article we determine the linear con-
ductance G = ∂I/∂V |V=0 of single electron devices. Here
I is the measured current and V the applied voltage. The
measured current I may be written as the expectation
value of an operator I(1). Using linear response theory in
the applied voltage V , one may deduce a Kubo like for-
mula for the linear conductance

G(ω) =
1

i~ω
lim

iνn→ω+iδ

∫ ~β

0

dτ eiνnτ 〈I(1)(τ)I(2)(0)〉, (8)
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Fig. 1. Circuit diagram of a tunnel junction in series with an
admittance.

where I(2) is a current operator determined by the cou-
pling to the applied voltage V , see below. The νn =
2πn/~β are Matsubara frequencies. Correlation functions
can be written as variational derivatives

〈I(1)(τ)I(2)(τ ′)〉 =
~2

Z[0, 0]
δ2Z[ξ1, ξ2]
δξ1(τ)δξ2(τ ′)

∣∣∣∣
ξi≡0

(9)

of a generating functional [32]

Z[ξ1, ξ2]=trTτ exp

−1
~

∫ ~β

0

dτ
[
H−

∑
i=1,2

I(i)ξi(τ)
]

(10)

depending on auxiliary fields ξi. Here, the Hamiltonian H
describes the system at vanishing external voltage, V =
0, and Tτ is the Matsubara time ordering operator. In
subsequent sections we apply this generating functional
approach to derive an explicit expression for the linear
conductance in the semiclassical regime.

3 Tunnel junction with environment

3.1 Generating functional

We consider a tunnel junction characterized by the geo-
metrical capacitance C and the tunneling conductance GT

embedded in an electromagnetic environment. Via net-
work transformations it is always possible to transform
the environmental degrees of freedom into an admittance
Y (ω) in series with the junction biased by a voltage source
V , cf. Figure 1. In this subsection we obtain the effective
action characterizing the generating functional introduced
above.

The Hamiltonian reads H = HJ(QJ, ϕJ) +Hem(ϕem).
Here the phases ϕJ and ϕem are related to the voltages VJ

and Vem across the tunnel junction and the admittance,
respectively, by ϕ̇J = e

~VJ and ϕ̇em = e
~Vem. Further, one

has to take care of constraints for the variables imposed by
the circuit. Using Kirchhoff’s law for the voltages, we find
that the sum of the phases in the circuit loop in Figure 1
has to be constant, i.e. ϕJ + ϕem + ψ = const., where we
have described the voltage source in terms of an additional
phase [9]

ψ(t) =
e

~

∫ t

−∞
dt′ V (t′). (11)

Similar relations hold for each loop of more complicated
circuits. For an adequate handling of these constraints we

start from the Lagrangian description, L = T −U . In gen-
eral, the kinetic energy T is given by the sum of Coulomb
energy terms and the effective potentials are the tunneling
and environmental Hamiltonians. The constraints are nat-
urally implemented by expressing the variables through
generalized coordinates. Defining generalized momenta in
the standard way, one can derive the Hamiltonian via a
Legendre transformation. To define conjugate momenta
non-ambiguously, we use the discrete Caldeira–Leggett
model and perform the continuum limit only afterwards.
Shunt capacitors need to be treated separately and will be
discussed in Section 5. Since ψ(t) is controlled externally,
the phase ϕem may be eliminated in favor of ϕJ ≡ ϕ and
we may write

HJE(Q,ϕ) = HJ(Q,ϕ) +Hem(ϕ+ ψ), (12)

where Q = e
~∂L/∂ϕ̇ is the momentum canonically con-

jugate to ϕ. In the second term, we have absorbed the
minus sign in front of ϕ + ψ into the arbitrary definition
of the sign of the phase of the environment. The current
may be defined as the time derivative of the charge on the
geometrical capacitance

Q̇ =
i
~

[HJE, Q] = IT + Iem, (13)

where the charge can change either by discrete tunneling
IT across the capacitor or by continuous flow Iem in the
leads. Here,

IT =
i
~

[HT(ϕ), Q] = − ie
~
∑
kqσ

(
tkqσa

†
kσaqσΛ−H.c.

)
(14)

is the current through the tunnel junction and

Iem(ϕ) =
i
~

[Hem(ϕ), Q] =
~
e

N∑
n=1

1
Ln

(ϕ− φn) (15)

the current through the admittance at vanishing exter-
nal voltage. To determine the linear conductance (8), we
choose the measured current I(1) to be the current Iem,
and I(2) follows from the coupling to the phase ψ in lin-
ear approximation:HJE(Q,ϕ, δψ) = HJE(Q,ϕ)+ ~

e I
(2)δψ.

Via a unitary transformation U = exp(−iκ1ψQ/e), it is
always possible to write the external voltage partly as a
shift of the phase variable ϕ. Using U†ϕU = ϕ− κ1ψ and
the general relation H ′ = U†HU + i~U† ∂∂tU , we get

H ′JE(Q,ϕ) = HJ(Q+ κ1V C,ϕ− κ1ψ) +Hem(ϕ+ κ2ψ),
(16)

where κ1 is an arbitrary shift and κ2 = 1 − κ1. Here
we choose κ1 = 0 so that the voltage couples solely
to the environmental degrees of freedom and then get
Hem(ϕ+ δψ) = Hem(ϕ)+ ~

e Iemδψ. Hence, in this case I(2)

coincides with the measured current I(2) = I(1) = Iem. To
derive the path integral representation of the generating
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functional (10), we define

H̃em(ϕ)=Hem(ϕ) − ξ(τ)Iem(ϕ)=Hem[ϕ− e

~
ξ(τ)] + ind.

(17)

where ind. denotes a ϕ-independent term that may be
omitted. Further, we separate the exponential in equa-
tion (10) into a free part A0(~β) for vanishing tunneling
and a tunneling part AT(~β) according to

Tτe−
1
~
R ~β
0 dτ( eH0+HT) = A0(~β)AT(~β), (18)

where

A0(τ) = Tτe−
1
~
R
τ
0 dτ ′ eH0(τ ′) (19)

describes the system in presence of the unperturbed
Hamiltonian H̃0 = H̃em + HC + Hqp. Using the series
expansion of AT(τ) in powers of HT and separating the
trace in equation (10) into partial traces over the charge
degrees of freedom of the device, the quasiparticle compo-
nents, and the environmental degrees of freedom, we ob-
tain an expression of the generating functional as a sum
of averages of the unperturbed system, cf. [20]. Due to the
Coulomb interaction Hamiltonian HC in the unperturbed
Hamiltonian H̃0, contributions of a given order in HT can-
not simply be evaluated with the help of Wick’s theorem,
however, the partial traces over the quasiparticle compo-
nents are averages weighted with the free fermionic den-
sity matrix ∼ exp(−βHqp) and, accordingly, products of
quasi-particle creation and annihilation operators in the
interaction picture decompose into products of two-pair
correlators. In the limit of large channel number N =∑
σ 1� 1, only specific combinations of contractions con-

tribute that may be written in terms of two-time correla-
tors of the tunneling Hamiltonian

G(τ, τ ′) =
1
~2
〈HT(τ)HT(τ ′)〉qp

=
t2

~2

∑
k1q1σ1

∑
k2q2σ2

∑
ζ1,ζ2=±

ζ1ζ2Λ
ζ1(τ)Λ−ζ2(τ ′)

× 〈aζ1k1σ1
(τ)a−ζ2k2σ2

(τ ′)〉qp〈a−ζ1q1σ1
(τ)aζ2q2σ2

(τ ′)〉qp

=
t2

~2

∑
kqσζ

Λζ(τ)Λ−ζ(τ ′)
eζ(τ

′−τ)(εkσ−εqσ)

(1 + eζβεkσ)(1 + e−ζβεqσ)
(20)

with a real averaged tunneling matrix element t = tkqσ .
Here 〈. . . 〉qp denotes the thermal average over the quasi-
particles with Hamiltonian Hqp. The time dependence in
the interaction picture reads

HT(τ) = exp
(τ
~
Hqp

)
HT exp

(
−τ
~
Hqp

)
(21)

and

Λζ(τ) = A0(−τ)ΛζA0(τ). (22)

Further, we have introduced the notation a+ = a†, a− =
a, and Λ± = exp(∓iϕ). Performing the continuum limit
for the longitudinal quantum numbers k and q, we find

G(τ, τ ′)=
1
~
GT

GK
α(τ − τ ′)

[
Λ†(τ)Λ(τ ′) + Λ(τ)Λ†(τ ′)

]
(23)

where GT/GK = 4π2t2Nρρ′ is the classical dimensionless
tunneling conductance with the densities of states ρ and
ρ′ at the Fermi level in the left and right electrode, re-
spectively. In our approach the limit of strong tunneling
is defined by N � 1, t2ρρ′ � 1 such that 4π2t2Nρρ′ � 1.
Since for lithographically fabricated metallic tunnel junc-
tions typically N & 104, GT/GK can become very large,
although each single channel is weakly transmitting only.

The quasiparticle excitations generated by HT are de-
scribed by an electron-hole pair Green function [20]

α(τ) =
1

4π2N~ρρ′
∑
kqσ

e(εkσ−εqσ)τ

(1 + e−βεkσ)(1 + eβεqσ )

=
~

4π2

∫ ∞
−∞

dε
ε e−|ε|/D

1− e−~βε
e−τε (24)

where the electron and hole propagate on different elec-
trodes. D is the electronic bandwidth which may be set to
infinity at the end of the calculation since D� EC, kBT .
Due to analytic properties of thermal Green functions, we
may write

α(τ) =
1
~β

∞∑
n=−∞

α̃(νn)e−iνnτ (25)

with Fourier coefficients

α̃(νn) = − ~
4π
νne−νn/D. (26)

Here and in the remainder of the article the analytic con-
tinuation of the absolute value is defined by

z =

{
z Re(z) > 0
−z Re(z) < 0,

(27)

which leads to a unique analytical continuation [46] of
the Fourier coefficients (26). Along these lines the partial
traces over the quasiparticle components may be evaluated
in terms of the tunneling kernel α(τ).

To proceed we need to consider next the partial trace
over the charge degrees of freedom. It is convenient, to
change to the phase representation and insert identity op-
erators

∫
dϕτ |ϕτ 〉〈ϕτ | at each imaginary time slice τn =

~β
N n, n = 0 . . . , N with N → ∞. The charge shift op-
erators in the interaction picture then become Λ±(τ) =
exp(∓iϕτ ). Dividing the generating functional (10) by the
quasiparticle partition function trqp exp(−βHqp) which
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has no effect on the correlator (9), we get

ZJE[ξ] =
∫
D[ϕ]

N∏
n=1

∫
D[φn] exp

{
−1
~
S0[ϕ, φn, ξ]

}

×
∞∑
m=0

∫ ~β

0

dτ2m
∫ τ2m

0

dτ2m−1 . . .

∫ τ2

0

dτ1

×
∑
pairs

m∏
k=1

G(τk1 , τk2), (28)

where S0[ϕ, φn, ξ] = SC[ϕ] + Sem[ϕ, φn, ξ] contains the
environmental and the Coulomb actions specified below.
Since the integrand is invariant under exchange of an ar-
bitrary pair of variables we may extend the integrations to∫ ~β

0 dτi (i = 1, . . . , 2m) and compensate the larger inte-
gration region by a factor 1/(2m)!. Further the sum over
pairs leads to a factor (2m− 1)!!. Interchanging integrals
and product we get

ZJE[ξ] =
∫
D[ϕ]

N∏
n=1

∫
D[φn] exp

{
−1
~
S0[ϕ, φn, ξ]

}

×
∞∑
m=0

1
m!

[
1
2

∫ ~β

0

dτ
∫ ~β

0

dτ ′G(τ, τ ′)

]m

=
∫
D[ϕ]

N∏
n=1

∫
D[φn] exp

{
−1
~
SJE[ϕ, φn, ξ]

}
,

(29)

where the effective Euclidean action splits into three parts

SJE[ϕ, φn, ξ] = SC[ϕ] + ST[ϕ] + Sem[ϕ, φn, ξ]. (30)

Here

SC[ϕ] =
∫ ~β

0

dτ
~2C

2e2
ϕ̇2 (31)

describes Coulomb charging and

ST[ϕ]=2
GT

GK

∫ ~β

0

dτ
∫ ~β

0

dτ ′α(τ − τ ′) sin2

[
ϕ(τ) − ϕ(τ ′)

2

]
(32)

quasi-particle tunneling across the junction. The environ-
mental action is given by

Sem[ϕ, φn, ξ] =
N∑
n=1

∫ ~β

0

dτ
[
~2Cn
2e2

φ̇2
n

+
~2

2e2Ln

(
ϕ− e

~
ξ − φn

)2
]
. (33)

The remaining trace over environmental degrees of free-
dom in equation (29) can be evaluated exactly [47] leading
to a quadratic nonlocal action

SY[ϕ, ξ] =
1
2

∫ ~β

0

dτ
∫ ~β

0

dτ ′k(τ − τ ′)
[
ϕ(τ) − e

~
ξ(τ)

− ϕ(τ ′) +
e

~
ξ(τ ′)

]2

, (34)

where the kernel k(τ) can be written as a Fourier se-
ries (25) with coefficients

k̃(νn) = − ~
4π

Ŷ (νn)
GK

νn. (35)

Here Ŷ (s) is the Laplace transform of the environmental
response function Y (t), cf. reference [47]. Due to causal-
ity, for Re(s) > 0, one may write Ŷ (s) = Y (is) where
Y (ω) is the frequency dependent admittance (7) of the
environment.

This way the generating functional reads

ZJE[ξ] =
∫
D[ϕ] exp

{
−1
~
SJE[ϕ, ξ]

}
, (36)

with the effective action

SJE[ϕ, ξ] = SC[ϕ] + ST[ϕ] + SY[ϕ, ξ]. (37)

The explicit form of the generating functional serves as
a starting point to calculate the correlator in the next
subsection.

3.2 Conductance

We now perform the functional derivatives in equation (9)
explicitly and get for the correlator [40]

〈Iem(τ)Iem(0)〉 =
1
ZJE

∫
D[ϕ] exp

{
−1
~
SJE[ϕ, 0]

}
×
(

2
e2

~
k(τ) + Iem[ϕ, τ ]Iem[ϕ, 0]

)
, (38)

where ZJE = ZJE[0] denotes the partition function. The
current functional Iem[ϕ, τ ] arising as variational deriva-
tive of the effective action (37) reads

Iem[ϕ, τ ] =
2e
~

∫ ~β

0

dτ ′ k(τ − τ ′)ϕ(τ ′). (39)

The conductance (8) now splits into two pieces

GJE(ω) = G
(1)
JE (ω) +G

(2)
JE (ω), (40)

where

G
(1)
JE (ω) =

1
i~ω

2e2

~
k̃(−iω + δ) = Y (ω) (41)

corresponds to the first term in equation (38), and

G
(2)
JE (ω) =

1
i~ω

FJE(−iω + δ) (42)

with

FJE(νn) =
1
ZJE

∫
D[ϕ] exp

{
−1
~
SJE[ϕ, 0]

}
F [ϕ, νn]

(43)
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to the second term in equation (38). The explicit form of
the auxiliary functional F [ϕ, νn] in terms of the Fourier
components ϕ̃(νm) reads

F [ϕ, νn] =
4e2β

~
k̃(νn)ϕ̃(νn)

+∞∑
m=−∞

k̃(νm)ϕ̃(νm). (44)

So far no further approximations have been made and
within the model used equations (40-44) give a formally
exact representation of the linear conductance. To pro-
ceed we evaluate the path integral (43) in the semiclassical
limit.

3.3 Semiclassical limit

The classical trajectory of the phase ϕ̌ is defined by
δSJE[ϕ̌, 0]/δϕ̌ = 0, and we obtain from equation (37)
ϕ̌ = ϕ0 = const. Since the action is invariant under a
global phase shift, we may put ϕ0 = 0. Writing the action
in terms of Fourier coefficients of the phase

ϕ̃(νn) =
1
~β

∫ ~β

0

dτeiνnτϕ(τ) (45)

and expanding in powers of ϕ̃(νn), we get

SJE[ϕ] = S0
JE[ϕ] +

∞∑
k=2

S2k
JE[ϕ], (46)

where

S0
JE[ϕ] = ~

∞∑
n=1

λJE(νn)|ϕ̃(νn)|2 (47)

is the second order variational action with the eigenvalues

λJE(νn) =
~2β

e2
νn

[
Ĝ0(νn) + Ŷ (νn)

]
. (48)

Here

Ĝ0(νn) = νnC +GT (49)

describes the tunnel junction as a capacitance in paral-
lel with an Ohmic resistor characterized by the classical
tunneling conductance. Further

S2k
JE[ϕ] =

GT

GK

(−1)k+1

(2k)!

2k−1∑
l=1

(
2k
l

)
(−1)l~β

×
∑

n1,··· ,n2k−1

′
α̃

(
−

l∑
p=1

νnp

)

× ϕ̃(νn1) · · · ϕ̃(νn2k−1)ϕ̃

(
−

2k−1∑
p=1

νnp

)
(50)

is the variational action of order 2k. The summation over
the ni is over all integers with ni = 0 omitted. Neglecting
sixth and higher order terms, we get from equation (43)

FJE(νn) =
4e2β

~
k̃(νn)2

λJE(νn)

[
1 +

GT

GK

2β
λJE(νn)

×
∞∑

m=−∞
m6=0

α̃(νn+m)− α̃(νn)− α̃(νm)
λJE(νm)

]
. (51)

The convergence of this expansion depends crucially on
the eigenvalues (48). To estimate the range of validity of
the truncated series, we write the smallest eigenvalue in
more appropriate units as

λJE(ν1) =
2π2

βEC
+
GT + Ŷ (ν1)

GK
· (52)

This eigenvalue has to be large compared to 1, and we
see that the expansion is useful for large conductances
GT + Ŷ (ν1)� GK and/or high temperatures βEC � 2π2.
Hence, we effectively expand in powers of

ε = Min

(
GK

GT + Ŷ (ν1)
,
βEC

2π2

)
. (53)

Performing the limit iνn → ω + iδ, the analytically con-
tinued eigenvalue (48) reads

λJE(−iω) = −iω
~2β

e2
[G0(ω) + Y (ω)] , (54)

where

G0(ω) = GT − iωC (55)

is the analytic continuation of the Laplace transform of
equation (49). The relative minus sign of the capacitive
term is due to the usual definition of the Fourier transform
in quantum mechanics, the electro-technical convention is
obtained by replacing ω → −ω. For small frequencies the
analytically continued eigenvalue (54) is no longer large
compared to 1 and we are faced with a problem of or-
der reduction. In the limit iνn → ω+ iδ each 1/λJE(νn) in
equation (51) becomes of order 1 while the 1/λJE(νm) fac-
tors for m 6= n are not analytically continued and remain
of order ε. The correction term of order ε2 in equation (51),
that is the term proportional to GT/GK, becomes of order
ε after analytic continuation. Hence we loose one factor of
ε. Generally, one finds that the higher order variational ac-
tions (50) include at most one 1/λJE(νn) factor and con-
sequently are reduced at most by one order in ε. Thus,
products of the form

S2k1
JE [ϕ]S2k2

JE [ϕ] . . . S2kl
JE [ϕ] (56)

of quartic or higher-order variational actions, as they arise
from an expansion in powers of ϕ̃(νk), give quantum cor-
rections of order εk1+k2+...+kl and after analytical con-
tinuation of order εk1+k2+...+kl−l and of higher orders.
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Fig. 2. Effective circuit diagrams for a tunnel junction in the
semiclassical limit a) for arbitrary frequency and b) in the low
frequency limit.

This proves that the terms of the expansion of FJE given
explicitly in equation (51) suffice to calculate the leading
order quantum corrections. After performing the analyti-
cal continuation we get

G
(2)
JE (ω) = − Y (ω)2

G0(ω) + Y (ω)

[
1 +

GT

G0(ω) + Y (ω)
U(ω)

]
(57)

with the quantum correction factor

U(ω) =
2
iω

∞∑
m=1

νm

[
1

λJE(νm − iω)
− 1
λJE(νm)

]
. (58)

Hence, for the total conductance we may write

GJE(ω) =
Geff(ω)Y (ω)
Geff(ω) + Y (ω)

(59)

with an effective linear conductance of the junction

Geff(ω) = GT [1− U(ω)]− iωC. (60)

This describes a linear element G∗(ω) = GT[1 − U(ω)],
depending on the whole circuit, in parallel with the geo-
metrical junction capacitance C, cf. Figure 2a. The gen-
eral form (59) is valid only to first order in ε. A systematic
treatment of higher order contributions does not allow for
a description of the tunnel junction in terms of an effective
linear element. However, a partial resummation of higher
order terms according to a self-consistent harmonic ap-
proximation [17,48] leads again to the form (59).

3.4 Results and comparison with experimental data

For further discussion and comparison with experimental
data we restrict ourselves to ohmic dissipation Y (ω) = Y .
The effective linear element (60) then reads

G∗(ω)
GT

= 1−
[
ψ(1 + u+ ω̃)− ψ(1 + ω̃)

u

+
ψ(1 + u+ ω̃)− ψ(1 + u)

ω̃

]
βEC

π2
, (61)

where ψ is the logarithmic derivative of the gamma func-
tion and

u = g
βEC

2π2
, ω̃ =

~β
2πi

ω (62)
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Fig. 3. Real and imaginary parts of G∗(ω)/GT in the ohmic
damping case for βEC = 1 and various values of the dimen-
sionless conductance g in dependence on the dimensionless fre-
quency Ω = ~ω/2πEC.

are auxiliary quantities. We also have introduced the di-
mensionless parallel conductance

g = (GT + Y )/GK. (63)

The quantum corrections depend only on this combina-
tion of conductances. The real and imaginary parts of
G∗(ω)/GT are depicted in Figure 3 for βEC = 1 and var-
ious values of g.

The quantum corrections are most pronounced at
zero frequency and disappear nonalgebraically for large
ω and/or u, due to the logarithmic behavior of the psi-
function for large arguments.

For the dc conductance we get from (61)

G∗(ω = 0)
GT

= 1−
[
γ + ψ(1 + u)

u
+ ψ′(1 + u)

]
βEC

π2

(64)

which coincides with our previous result [40]. In partic-
ular, in the limit of a very low resistance environment,
the total conductance (59) approaches the classical limit
nonanalytically, cf. Figure 4, leading to the asymptotic
expansion [40]

GJE(ω = 0) =

GT

[
1 + 2

GK

Y
ln
(
GK

Y

)
+O

(
| ln(βEC)|GK

Y

)]
. (65)

On the other hand for moderate to large environmental
resistance, we may expand equation (64) with respect to
u leading to a total conductance

GJE(ω = 0) =
GTY

GT + Y

{
1− Y

G+ Y

βEC

3
+O

[
(βEC)2, uβEC

]}
. (66)
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Fig. 4. The ratio of the total dc conductance GJE(0) and
the classical conductance Gcl = GTY/(GT + Y ) shown vs. the
dimensionless environmental resistance GK/Y for GT = GK

and βEC = 1/4. The solid line is the result (59) for ω = 0
and ohmic damping, and the dotted line corresponds to the
approximation (66) for moderate to small Y .

This approximation corresponds to the dotted line in
Figure 4 and remains analytic in the limit of large en-
vironmental conductance where it obviously fails.

In Figure 5 we compare our prediction (64) with re-
cent experimental data by Joyez et al. [17] for dimension-
less conductance g = 4.2 and 23.8 (upper plot) and by
Farhangfar et al. [18] for g = 4.52 and g = 34.2 (lower
plot). Figure 5 shows that in the limit of large conductance
we are able to explain the whole range of temperatures ex-
plored experimentally, whereas for moderate conductance
only the high temperature part is covered by the semiclas-
sical theory. Here, the parameters g and EC have not been
adjusted to improve the fit but coincide with those given
in the experimental papers.

We conclude this section with some remarks on the
frequency dependence of the conductance that has not
been studied experimentally, so far. For small frequencies
we may expand the result (61) and write

G∗(ω) = G∗(ω = 0)− iωC∗ +O(ω2), (67)

where C∗ leads to a renormalization of the junction ca-
pacitance C. The renormalized capacitance Ceff = C+C∗

reads

Ceff

C
= 1 +

GT

GK

[
π2

3 − 2ψ′(1 + u)
u

− ψ′′(1 + u)

]
(βEC)2

4π4
·

(68)

The correction shows a quadratic dependence on βEC and
therefore is suppressed at high temperatures. It also van-
ishes linearly for large conductance g due to the analytical
properties of the psi function. The semiclassical treatment
covers only the region of weak Coulomb blockade. Whereas
for small tunneling conductance low temperatures imply
strong Coulomb blockade, these effects are suppressed for
highly conducting tunnel junctions and the semiclassical
theory is restored. A closer examination of equation (61)
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Fig. 5. The renormalized conductance (64) versus the di-
mensionless temperature compared with experimental data by
Joyez et al. [17] for dimensionless parallel conductance g = 4.2
and 23.8 (upper plot) and with experimental data by Farhang-
far et al. [18] for g = 4.52 and 34.2 (lower plot).

shows that for g � 2 ln(βEC) the quantum corrections
are always small. For fixed g � 1, our predictions are
therefore valid for a very large range of temperatures cov-
ering in fact the entire range of parameters presently at-
tainable experimentally for metallic junctions with strong
tunneling [17–19]. Figure 6 depicts the real and imagi-
nary parts of G∗(ω)/GT for g = 60 and various tempera-
tures. With decreasing temperature the real part shows for
ω = 0 a logarithmic decrease, G∗/GT = 1− 2 ln(βEC)/g,
as long as kBT � EC exp(−g/2). Thus, for large con-
ductance the semiclassical treatment is an effective high
temperature expansion valid for kBT large compared with
the renormalized charging energy E∗C ≈ EC exp(−g/2)
[33,36]. Moreover, the analytical form of the quantum
corrections indicates that Coulomb blockade survives for
arbitrary large conductance but becomes strong only for
temperatures below E∗C/kB.

In the limit T → 0 and g → ∞ such that kBT �
EC exp(−g/2), the imaginary part of G∗(ω) becomes a
step function of width 2π/g, cf. Figure 6, leading to a di-
vergent renormalized capacitance of the form Ceff/C =
βECGT/6(GT + Y ). The linear dependence of Ceff on β
starts already at very high temperatures, cf. Figure 7, and
only saturates for βEC of order exp(g/2). The large renor-
malized capacitance is a strong tunneling effect due to
multiple electron tunneling and is found likewise for non-
Ohmic environmental impedances. In Figure 7 we show
the renormalized capacitance Ceff/C for GT/GK = 20 and
various values of Y/GK in dependence on the dimension-
less inverse temperature βEC. Note that the linear behav-
ior of the capacitance starts already near βEC = 1.
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Fig. 7. Renormalized capacitance Ceff/C in the Ohmic damp-
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environmental conductances Y/GK = 1, 5, 10, and 20 in depen-
dence on the dimensionless inverse temperature βEC.

The renormalized capacitance describes the frequency
dependence of the conductance for small frequencies ωCeff

� πGT/g, cf. Figure 6. Rewriting this inequality we get
ω � 6kBT/~ ≈ 1011T Hz, where T is the temperature
measured in Kelvin. Thus for all accessible temperatures
the frequency range of strong 1/f noise can be avoided,
and the effect predicted should be clearly observable ex-
perimentally.

4 Array of junctions with environment

4.1 Generating functional and conductance

As a first extension of the method, we now consider lin-
ear arrays of N tunnel junctions embedded in an electro-
magnetic environment. The junctions are characterized by
classical tunneling conductances Gj and geometrical ca-
pacitances Cj in parallel. Like in the previous section, the

Y( ) C1 , G1 CN , GN

VI

Fig. 8. Circuit diagram of an array of N tunnel junctions in
series with an admittance Y (ω).

environment can be transformed into an admittance Y (ω)
in series with an array of junctions biased by a voltage
source V , cf. Figure 8. We start with a Lagrangian de-
scription depending on phase variables ϕj of each junc-
tion j = 1 . . .N and an environmental phase ϕem with the
constraint

∑N
j=1 ϕj +ϕem +ψ = const., where ψ describes

the applied voltage and is given by equation (11). Using
the ϕj , j = 1 . . .N as generalized variables we find for the
total Hamiltonian

HAE({Qj}, {ϕj}) =
N∑
j=1

HJ(Qj , ϕj) +Hem

 N∑
j=1

ϕj + ψ


(69)

with the junction and environmental Hamiltonians defined
by equations (1-6). We follow the analysis in the previ-
ous section and first derive a formally exact expression
for the linear conductance. As measured current I(1) we
choose again the current flowing through the environmen-
tal impedance given by equation (15) with ϕ replaced by∑N
j=1 ϕj and Q by

∑N
j=1 Qj, respectively. The second cur-

rent operator I(2) is determined by the linear coupling to
ψ and we get I(1) = I(2) = Iem. Following the lines of rea-
soning in the previous sections, the generating functional
is found to read

ZAE[ξ] =
∫

D[{ϕj}] exp
{
−1
~
SAE[{ϕj}, ξ]

}
, (70)

with the effective Euclidean action

SAE[{ϕj}, ξ] = SY

[∑N

i=j
ϕj , ξ

]
+

N∑
i=j

Sj [ϕj ]. (71)

Here SY was introduced in equation (34) and Sj [ϕj ] =
SC
j [ϕj ] + ST

j [ϕj ] describes the jth junction where the
Coulomb action SC

j and the tunneling action ST
j are given

by equations (31, 32), with the replacements GT → Gj
and C → Cj . Performing the functional derivatives ex-
plicitly, the current-current correlator is found to be of the
form (38) with the replacement ZJE → ZAE = ZAE[0] and
the appropriate action SAE[{ϕj}, 0]. Further, the current
functionals Iem[ϕ, τ ] now depend on the sum of phases,
ϕ →

∑N
j=1 ϕj , and the functional integral is defined over

all configurations of the phases ϕj . As in equation (41) the
first term can be handled exactly, and we find GAE(ω) =
Y (ω)+G(2)

AE(ω), where G(2)
AE(ω) given by equations (42, 43)

with F [ϕ, νn]→ F [
∑N
j=1 ϕj , νn]. So far no approximations
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have been made and the result follows from a straightfor-
ward extension of our findings for a single junction. The
qualitative difference lies in the topological structure of
the phase configuration space and becomes clear when one
evaluates the path integral. Again, we restrict ourselves to
the semiclassical limit.

4.2 Semiclassical limit

Determining the classical path one has to take into ac-
count the topological structure of the configuration space.
The phases ϕj , j = 1, . . . , N are canonically conjugate
to the charges Qj on the junction capacitances. Now the
array has N − 1 metallic islands in between the junctions
carrying the charges qj = Qj−Qj+1 for j = 1, . . . , N −1.
These island charges are quantized in units of the elemen-
tary charge e, and the phases ψj canonically conjugate
to the qj are compact, i.e., the configuration space of the
phases is a (N − 1)-dimensional torus. Accordingly, the
path integral is over all configurations of the phases ψj
with ψj(~β) = ψj(0)+2πkj where the winding numbers kj
are integers. On the other hand, the environmental phase
is extended and conjugate to a certain linear combination
Q of the Qj. Since the environment transfers charges con-
tinuously, Q is not quantized and the path integral over
the environmental phase is over all configurations with
ϕem(0) = ϕem(~β). Rather than making the canonical
transform to the charges qj (j = 1, . . . , N − 1), Q and the
conjugate phases explicitly, one finds that equivalently we
may integrate over all configurations of the phases ϕj with
ϕj(~β) = ϕj(0)+2πkj where the integer winding numbers
obey the constraint

∑N
j=1 kj = 0.

At high temperatures the classical paths are straight
line flips ϕ̌

(kj)
j (τ) = ϕ0

j + νkjτ running from ϕ0
j to

ϕ0
j + 2πkj . The action is invariant under global shifts of

the ϕj and we may set ϕ0
j = 0 for all j = 1, . . . , N .

All paths with winding number kj 6= 0 are exponen-
tially suppressed by the classical action contribution Scl

j ≈
π2k2

j /βECj + |kj |Gj/2GK. Thus, to obtain the leading
order quantum corrections, we may restrict ourselves to
winding numbers kj = 0 for j = 1 . . .N . Finite winding
numbers are considered in the next section where we focus
on the single electron transistor and go beyond the leading
order quantum correction.

The action may be expanded in powers of the Fourier
coefficients ϕ̃i(νn) yielding a result of the form (46) where
the second order variational action reads

S0
AE[{ϕj}] = S0

Y

[∑N

j=1
ϕj

]
+

N∑
j=1

S0
j [ϕj ]. (72)

The environmental contribution is given by

S0
Y [ϕ] = ~

∞∑
n=1

λY (νn)|ϕ̃(νn)|2, (73)
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Fig. 9. Renormalized conductanceG∗/G of an array of N = 20
tunnel junctions in dependence on βEC for Y/GK = 20 and
various tunneling conductances G/GK.

with the eigenvalues

λY (νn) =
~2β

e2
νnŶ (νn). (74)

The second order variational tunneling action for junction
j reads

S0
j [ϕj ] = ~

∞∑
n=1

λj(νn) |ϕ̃j(νn)|2 (75)

with the eigenvalues

λj(νn) =
~2β

e2
νnĜ

0
j(νn), (76)

where Ĝ0
j (νn) is given by equation (49) adapted to a junc-

tion with capacitance Cj in parallel with an Ohmic resis-
tor 1/Gj. The higher order variational actions are given by
straightforward extensions of equation (50). Expanding in
powers of the higher order terms S2k

AE[ϕ], k = 2, 3, . . . , we
are left with expectation values of products of the phase
variables ϕ̃j(νn). It is now useful to define a Gaussian
average

〈X〉0 =
1

Z0
AE

∫ ∞∏
n=1

N∏
j=1

dϕ̃j(νn)dϕ̃∗j (νn)

× exp
{
−1
~
S0

AE[{ϕj}]
}
X (77)

with the Gaussian partition function Z0
AE defined by the

requirement 〈1〉0 = 1. The difference between Z0
AE and the

full partition function ZAE is of order (βECj )2 and may be
neglected here. Due to the Gaussian form of the measure
exp[−S0

AE[{ϕj}]/~], the averages of products of Fourier
coefficients ϕ̃j(νn) decompose into sums over products of
two point expectations. For two different phase variables
l 6= l′ we obtain

〈ϕ̃l(νn)ϕ̃l′(νm)〉0 = −δn,−m
N+1∏
j 6=l,l′

λj(νn)

/
Λ(νn), (78)
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with

Λ(νn) =
N+1∑
i=1

N+1∏
j 6=i

λj(νn). (79)

Here and in the remainder we define λN+1(νn) = λY(νn)
and note that summation and multiplication indices run
from 1 if not otherwise specified. For phase variables of
the same junction we find

〈ϕ̃l(νn)ϕ̃l(νm)〉0 =
1

λ(l)(νn)
δn,−m, (80)

where

λ(l)(νn) =
~2β

e2
νnĜ

′
l(νn) (81)

plays the role of an effective eigenvalue for phase fluctua-
tions in junction l with all other phases ϕj , j 6= l already
traced out. Here,

Ĝ′l(νn) = Ĝ0
l (νn) +

 1

Ŷ (νn)
+

N∑
j 6=l

1

Ĝ0
j(νn)

−1

(82)

may be considered as the Laplace transform of an effective
response function describing the circuit seen from junction
l, i.e., a series of N − 1 junctions and an environmental
impedance in parallel to junction l where the junctions
are described effectively by linear elements. Including the
fourth order variational derivative of the action, we get as
a generalization of equation (51)

FAE(νn) =
4e2β

~
k̃(νn)2

Λ(νn)

N∑
l=1

N∏
j 6=l

λj(νn)

×
[

1 +
Gl
GK

2β
Λ(νn)

N∏
j 6=l

λj(νn)

×
∞∑

m=−∞
m6=0

α̃(νn+m)− α̃(νn)− α̃(νm)
λ(l)(νm)

]
. (83)

Now, the convergence of the expansion depends on the ef-
fective eigenvalues (81). To estimate the range of validity,
we consider the smallest eigenvalues which at high tem-
peratures are given by λ(l)(ν1) ≈ 2π2/βECl . Again the
analytic continuation gives rise to a reduction of the order
of the quantum corrections in the expansion parameter.
For contributions with vanishing winding number the ar-
guments given in the previous section apply likewise to
the present problem. On the other hand, for lower tem-
peratures one has to take into account winding numbers
kj 6= 0 and finds that some of the eigenvalues tend to
zero. The marginally stable fluctuation modes lead to a
breakdown of the simple semiclassical treatment. The ap-
propriate extension of the semiclassical approximation was
discussed elsewhere [36]. The topological structure of the
phase space leading here to a breakdown of the simple

semiclassical approximation at low temperatures even for
large conductance is the main difference between the sin-
gle tunnel junction with environment and circuits con-
taining many junctions. As a result one finds that the
truncated expression (83) is valid up to first order in
ε = Max

(
βECj : j = 1, . . . , N

)
. After the analytical con-

tinuation νn → −iω+δ we can write the total conductance
in the compact form

GAE(ω) =

 1
Y (ω)

+
N∑
j=1

1
Gjeff(ω)

−1

, (84)

describing N+1 linear elements in series: Gjeff(ω) with j =
1, . . . , N and the admittance Y (ω). Here, the Gjeff(ω) are
of the form (60) where the auxiliary functions Uj are given
by equation (58) with λJE replaced by λ(j) introduced in
equation (81). This is a straightforward extension of the
result in the previous section valid to linear order in ε for
arbitrary conductances Gj and admittances Y (ω).

4.3 Discussion of results

For a more explicit discussion of the results we consider
now N identical junctions Gj = G and Cj = C. The
eigenvalues (81) then read

λ(νn) = λ(j)(νn)

=
~2β

e2
νn

[
Ĝ0
j (νn) +

Ŷ (νn)Ĝ0
j (νn)

(N − 1)Ŷ (νn) + Ĝ0
j (νn)

]
(85)

and coincide for all junctions. For the total conductance
of the array (84) we obtain

G(ω) =
Geff(ω)Y (ω)

Geff(ω) +NY (ω)
, (86)

where

Geff(ω) = G[1− U(ω)]− iωC (87)

is the effective linear conductance of one junction. In this
order each junction can be described by a linear element
G∗(ω) = G[1 − U(ω)], depending on the circuit, in par-
allel with the geometrical capacitance C as depicted in
Figure 2a. To proceed we consider an Ohmic environment
Y (ω) = Y and find for the effective linear element

G∗(ω)
G

= 1−
{

(N − 1)[ψ(1 + uT + ω̃)− ψ(1 + ω̃)]
uT

+
ψ(1 + uN + ω̃)− ψ(1 + ω̃)

uN

+
(N − 1)[ψ(1 + uT + ω̃)− ψ(1 + uT)]

ω̃

+
ψ(1 + uN + ω̃)− ψ(1 + uN)

ω̃

}
βEC

π2N
, (88)
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Fig. 10. Renormalized conductance G∗/G of an array of N =
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where

uN =
G+NY

GK

βEC

2π2
, uT =

G

GK

βEC

2π2
, ω̃ =

~β
2πi

ω (89)

are auxiliary quantities and EC = e2/2C is the charging
energy for one junction. For N = 1 we recover the results
of Section 3, of course. For a large array with N � 1,
terms in equation (88) containing uN drop out, and the
quantum suppression becomes independent of Y . Further-
more the high-temperature anomaly, cf. Figure 4, is now a
1/N effect and the limiting result for N →∞ is analytic.

For small frequencies the effective element behaves like
an Ohmic resistor 1/G∗(ω = 0) with a renormalized ca-
pacitance in parallel. The dc conductance is given by

G∗(ω = 0)
G

=

1−
{

(N − 1)
[
γ + ψ(1 + uT)

uT
+ ψ′(1 + uT)

]
+
γ + ψ(1 + uN)

uN
+ ψ′(1 + uN )

}
βEC

Nπ2
· (90)

For N = 2 and Y/GK →∞ this reduces to

G∗

G
= 1−

[
γ + ψ(1 + uT)

uT
+ ψ′(1 + uT)

]
βEC/2
π2

(91)

coinciding with earlier findings for the symmetrical SET
[35,41]. On the other hand, in the limit of large N and
moderate G . GK, equation (90) reduces to

G∗

G
= 1− N − 1

N

βEC

3
(92)

again in accordance with earlier findings [49] derived from
rate theory for small tunneling conductances. To discuss
the strong tunneling corrections, we show in Figure 9 the
renormalized conductance of an array of N = 20 tun-
nel junctions in dependence on βEC for Y/GK = 20 and
various tunneling conductances G/GK. We find that the
weakly conducting case G/GK = 0.1 perfectly coincides
with the limiting formula (92) (both depicted by the solid

0 0.25 0.5

GK/Y

1.4

1.5

1-
G

*
/G

[%
]

semiclassic
Master eq.

N = 20 EC = 0.0442

Fig. 11. Zero bias dip 1 − G∗/GT in per cent for an array
of length N = 20 and βEC = 0.0442 as a function of the
inverse environmental conductance GK/Y in the perturbative
limit compared with a numerical master equation approach by
Farhangfar et al. [50].

line) whereas for larger tunneling conductances strong de-
viations from this behavior appear.

Experimentally one is interested in the dependence on
the array length at fixed classical series conductance. In
Figure 10 we show G∗/G for various N whereby G in-
creases with the array length to keep the total classical
series conductance constant. Whereas forN < 5 the renor-
malized conductance depends strongly on Y , it becomes
independent for large N .

The comparison with available experimental data [50]
is complicated by the large number of parameters, in par-
ticular, the charging energy differs from sample to sample
with different array length. To test our predictions at least
in the perturbative regime, we compare with the results of
a master equation approach [50] based on the P (E) the-
ory [9]. In Figure 11 we show the zero bias dip 1−G∗/GT in
per cent for an array of length N = 20 and βEC = 0.0442
in the limit G→ 0. We find good agreement between the
numerical calculations by Farhangfar et al. [50] and the
analytical semiclassical result (90).

The renormalized capacitance Ceff includes the linear
part in ω of G∗(ω) and the geometrical capacitance C and
reads

Ceff

C
= 1 +

G

GK

×
{

(N − 1)

[
π2

3 − 2ψ′(1 + uT)
uT

− ψ′′(1 + uT)

]

+
π2

3 − 2ψ′(1 + uN )
uN

− ψ′′(1 + uN)

}
(βEC)2

4Nπ4
(93)

showing a quadratic dependence on βEC. The renormal-
ization is suppressed at high temperatures and also van-
ishes linearly for large conductance in accordance with the
behavior of a single tunnel junction with environment.
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Fig. 12. Circuit diagram of the single electron transistor.

5 Single electron transistor

5.1 Generating functional and conductance

The SET consists of two tunnel junctions with tunnel-
ing conductances G1, G2 and capacitances C1, C2, re-
spectively, biased by a voltage source V , cf. Figure 12.
The voltage may be split among the branches in ρ1V and
ρ2V with (ρ1 + ρ2 = 1). The island in between the junc-
tions is connected via a gate capacitance Cg to a con-
trol voltage Ug shifting the electrostatic energy of the
system continuously. The important energy scale is the
charging energy EC = e2/2C with the island capacitance
C = C1 + C2 + Cg. For weak electron tunneling, EC is
the energy needed to charge the island with one excess
electron at vanishing gate voltage Ug = 0. Due to the
periodicity of the Hamiltonian in Ug, the conductance
is a periodic function with period 1 of the dimension-
less gate voltage ng = UgCg/e [7]. Following the lines
of reasoning in the previous sections, we start with the
Lagrangian description with phases ϕ1, ϕ2 across the tun-
nel junctions and ϕg across the gate capacitor. Here, we
treat the shunt capacitor Cg explicitly and do not intro-
duce an effective environmental impedance. For the circuit
depicted in Figure 12 there are two independent circuit
loops leading to the constraints ϕ1 −ϕ2 −ψ = const. and
ϕ1−ϕg −ψg− ρ1ψ = const., where ψ is the phase (11) of
the transport voltage V and ψg the corresponding phase
of the gate voltage Ug. Eliminating ϕ2 and ϕg in favor of
ϕ ≡ ϕ1, we find

H ′SET = HC(Q+ eng + V (C2 + ρ1Cg))

+H
(1)
T (ϕ) +H

(2)
T (ϕ− ψ) +H(1)

qp +H(2)
qp . (94)

The Coulomb Hamiltonian HC is given by equation (1)
and the other terms are defined by equations (2, 3) with
corresponding labels. After a unitary transformation one
finds equivalently

HSET = HC(Q+ eñg) +H
(1)
T (ϕ+ κ1ψ)

+H
(2)
T (ϕ− κ2ψ) +H(1)

qp +H(2)
qp (95)

with an arbitrary shift parameter κ1 and κ2 = 1 − κ1.
Here we introduced a shifted dimensionless gate voltage

eñg = UgCg + V (C2 + ρ1Cg − κ1C). (96)

In the sequel we restrict ourselves to zero frequency where
the expectation values of the current operators through

both junctions coincide 〈I1〉(ω = 0) = 〈I2〉(ω = 0).
The first current operator I(1) may then be chosen as
an arbitrary linear combination I(1) = ε1I1 − ε2I2 (with
ε1 + ε2 = 1) of the tunneling current operators I1 and I2
through junctions 1 and 2, respectively. The relative mi-
nus sign comes from the opposite directions of I1 and I2,
which are both positive for flux onto the island. The sec-
ond current operator I(2) = κ1I1 − κ2I2 is determined as
above by the linear coupling term to the transport voltage
V . The dependence of the Coulomb Hamiltonian on the
transport voltage may be removed by a gate voltage shift
and thus need not be considered. Moreover, this coupling
would lead to a displacement current contribution vanish-
ing at ω = 0. To evaluate the current-current correlator
we employ the generating functional (10). The current op-
erators through the junctions are given by equation (14),
for j = 1, 2. To derive the generating functional we define

H̃
(j)
T = H

(j)
T (ϕ) − Ijξj(τ). (97)

The new tunneling Hamiltonians are of the form (3) where
Λ is replaced by [1+ieξj(τ)/~]Λj . With these replacements
we get for the generating functional

ZSET[ξ1, ξ2] =
∫

D[ϕ] exp
{
−1
~
SSET[ϕ, ξ1, ξ2]

}
, (98)

where the effective action reads

SSET[ϕ, ξ] = SC
SET[ϕ] + ST

1 [ϕ, ξ1] + ST
2 [ϕ, ξ2]. (99)

The first term on the rhs

SC
SET[ϕ] =

∫ ~β

0

dτ
[
~2ϕ̇2(τ)

4EC
+ i~ngϕ̇(τ)

]
(100)

describes Coulomb charging of the island in presence of
an applied gate voltage. The effective tunneling action

ST
j [ϕ, ξj ] = − Gj

GK

∫ ~β

0

dτ
∫ ~β

0

dτ ′α(τ − τ ′)
[
1− i

e

~
ξj(τ)

]
×
[
1 + i

e

~
ξj(τ ′)

]
ei[ϕ(τ)−ϕ(τ ′)] (101)

describes quasi-particle tunneling through junction j with
the kernel α(τ) given by equation (25). For vanishing aux-
iliary field ξj = 0, the action reduces to the single electron
box action [36] SSET[ϕ] = SSET[ϕ, 0, 0] = Sbox depending
only on the parallel conductance G|| = G1 +G2. One has

ST
1 [ϕ, 0] + ST2 [ϕ, 0] =

2
G||
GK

∫ ~β

0

dτ
∫ ~β

0

dτ ′α(τ − τ ′) sin2

[
ϕ(τ) − ϕ(τ ′)

2

]
.

(102)

Thus, the generating functional at vanishing auxiliary
fields gives the box partition function ZSET = ZSET[0, 0] =
Zbox. Performing the variational derivatives explicitly, we
get for the correlator

〈Ij(τ)Ij′ (τ ′)〉 = 〈Ij(τ)Ij(τ ′)〉Eδj,j′ + 〈Ij(τ)Ij′ (τ ′)〉F .
(103)
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Since the auxiliary fields are in the argument of an expo-
nential, there are two contributions. The first term comes
from the second order variational derivative of the action
and reads

〈Ij(τ)Ij(τ ′)〉E = 4πGjα(τ − τ ′) 1
ZSET

×
∫

D[ϕ] exp
{
−1
~
SSET[ϕ]

}
cos[ϕ(τ) − ϕ(τ ′)]. (104)

The second term in equation (103) involves a multiplica-
tion of two current functionals arising as first order varia-
tional derivatives of the action

〈Ij(τ)Ij′ (τ ′)〉F =
GjGj′

G2
K

1
ZSET

×
∫

D[ϕ] exp
{
−1
~
SSET[ϕ]

}
I[ϕ, τ ]I[ϕ, τ ′], (105)

with the current functional

I[ϕ, τ ] =
2e
~

∫ ~β

0

dτ ′α(τ − τ ′) sin[ϕ(τ) − ϕ(τ ′)]. (106)

Taking into account that 〈Ij(τ)Ij(τ ′)〉E/Gj and
〈Ij(τ)Ij′ (τ ′)〉F /GjGj′ depend only on the parallel
conductance G|| = G1 + G2 and thus are independent of
the indices j and j′, the conductance may be written as

G = ε1κ1(G1E +G2
1F )− (ε1κ2 + ε2κ1)G1G2F

+ ε2κ2(G2E +G2
2F ), (107)

where

E = lim
ω→0

1
~ω

Im lim
iνl→ω+iδ

∫ ~β

0

dτ eiνlτ
〈I1(τ)I1(0)〉E

G1
(108)

and

F = lim
ω→0

1
~ω

Im lim
iνl→ω+iδ

∫ ~β

0

dτ eiνlτ
〈I1(τ)I1(0)〉F

G2
1

·

(109)

Since the conductance does not depend on the specific
choice of the parameters εj and κj , we then find that

GSET = GclE, (110)

with the classical series conductance

Gcl =
G1G2

G1 +G2
· (111)

Within the applicability of the model this is a formally ex-
act expression for the linear dc conductance. To proceed,
we make explicit the sum over winding numbers k of the
phase and write the correlator (104) in the form

〈I1(τ)I1(0)〉E/G1 = 4πα(τ)
1

ZSET

∞∑
k=−∞

ϕ(~β)=2πk∫
ϕ(0)=0

D[ϕ]

× exp
{
−1
~
SSET[ϕ]

}
cos[ϕ(τ) − ϕ(0)]. (112)

This result may be used as a starting point for analytical
work and/or numerical calculations [51]. For further anal-
ysis, here we consider the semiclassical approximation.

5.2 Semiclassical limit

For given winding number k, the path integral may be
evaluated approximately by expanding around the classi-
cal paths ϕ̌(k)(τ) = ϕ0 + νkτ . An arbitrary path of wind-
ing number k may be written ϕ(τ) = ϕ̌(k)(τ) + ζ(τ) with
ζ(0) = ζ(~β) = 0. In terms of the Fourier coefficients
ζ̃(νn) the action reads

SSET[ϕ̌(k) + ζ] = 2πik~ng + S
(k)
SET[ζ] +

∞∑
m=2

δmS
(k)
SET[ζ],

(113)

where the first term on the rhs is the topological contri-
bution and

S
(k)
SET = ~

(
π2k2

βEC
+ |k|g

2

)
(114)

the classical action of winding number k, with the dimen-
sionless parallel conductance g = G||/GK. The second or-
der variational action

δ2S
(k)
SET = ~

∞∑
n=1

λ
(k)
SET(νn)

∣∣∣ζ̃(νn)
∣∣∣2 (115)

is diagonal with the eigenvalues

λ
(k)
SET(νn) =

2π2n2

βEC
+ gΘ(n− |k|)(n− |k|). (116)

The higher order terms in (113) read

δ(2m+1)S
(k)
SET = g

(−1)m

(2m+ 1)!

×
∫ ~β

0

dσdσ′α(σ − σ′) sin[νk(σ − σ′)][ζ(σ) − ζ(σ′)]2m+1

(117)

for odd orders and

δ(2m)S
(k)
SET = g

(−1)m+1

(2m)!

×
∫ ~β

0

dσdσ′α(σ − σ′) cos[νk(σ − σ′)][ζ(σ) − ζ(σ′)]2m

(118)

for even orders, with m = 1, 2, . . . . Since λ(k)
SET(νn) is large

for small βEC, the expansion (113) about the classical
path converges rapidly for high temperatures. At low tem-
peratures λ(k)

SET(νn) vanishes for |n| < |k| and the simple
semiclassical approximation breaks down. The zero modes
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can be treated systematically for large g by consider-
ing quasi-classical trajectories with collective coordinates
(sluggons) and fluctuations around them. This treatment,
presented elsewhere [36] for the partition function of the
single electron box, lies outside the scope of the present
work and we proceed with the high temperature expan-
sion. Rewriting the cosine function in equation (112) as
a sum of exponentials, we may perform the path integral
and get for the correlator

〈I1(τ)I1(0)〉E/G1 = 4πα(τ)
1

ZSET

∞∑
k=−∞

C|k|e−2πikng

× exp

[
−2

∞∑
m=1

1− cos(νmτ)

λ
(k)
SET(νm)

] [
1− 1

~
S

(k)
4 + ...

]
, (119)

where the coefficients Ck read [36]

Ck =
Γ (1 + k+)Γ (1 + k−)
Γ 2(1 + k)Γ (1 + u)

e−S
(k)
SET , (120)

with k± = k + u
2 ±

1
2

√
4uk + u2 and u = gβEC/2π2. The

contribution of the third order variational action cancels,
thus the dominant correction to the semiclassical approx-
imation stems from the fourth order term

S
(k)
4 =

1
2
g~β

∞∑
m,l=−∞
m,l 6=0

α̃(νk)− 2α̃(νl+k)− 2α̃(νl−k) + α̃(νm+l+k) + α̃(νm+l−k)

λ
(k)
SET(νm)λ(k)

SET(νl)
·

(121)

The corresponding expansion of the partition function
ZSET reads

ZSET =
∞∑

k=−∞
C|k|e2πikng

[
1− 1

~
S

(k)
4 + ...

]
, (122)

with the same correction (121). The expansions (119)
and (122) proceed in powers of βEC, however, terms in-
volving u = gβEC/2π2 are kept to all orders. This ensures
a meaningful result in the limit of moderately high tem-
peratures also for large parallel conductance g.

From equation (119) one obtains for the Fourier
coefficients

E(νn) =
∫ ~β

0

dτ eiνnτ 〈I1(τ)I1(0)〉E/G1 (123)
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Fig. 13. Conductance of a symmetrical SET in dependence
on the dimensionless gate voltage ng for various temperatures
and parallel conductance g = 7.3.

the high temperature expansion

E(νn) =
4π
ZSET

∞∑
k=−∞

C|k|e−2πikng

× exp

[
−2

∞∑
l=1

1

λ
(k)
SET(νl)

]{
α̃(νn+k)

+
∑
m6=0

α̃(νn+k+m)

λ
(k)
SET(νm)

+
1
2

∑
m,l6=0

α̃(νn+k+m+l)

λ
(k)
SET(νm)λ(k)

SET(νl)

− 1
~
α̃(νn+k)S(k)

4 +O(βEC)3

}
. (124)

Since no 1/λ(k)
SET(νn) term appears, the order of the ex-

pression remains the same after analytical continuation.
When E(νn) is analytically continued in the complex ν
plane, E(ν) is analytic on each half plane Re ν ≶ 0 with
a cut along the imaginary axis [46]. The representation
of E(ν) as a sum over winding numbers k shifts this cut
to Re ν = k for the kth term of the sum. Thus, in the
phase representation, only the full sum shows the ana-
lytic properties underlying the conductance formula (8).
The summands of the high temperature expansion (124)
for winding number k are of the form g(k)f(|n + k|) =
Θ(−n− k)g(k)f(−n− k) +Θ(n + k)g(k)f(n+ k), where
f(n), g(n) are analytic functions and g(k) = g(−k).

Now, the sum over winding numbers may be expressed
as a sum over charges m

∞∑
k=−∞

g(k)f(|n+ k|) =

∞∑
m=−∞

∫ −n
−∞

dκ e2πimκg(κ)f(−n− κ)

+
∫ ∞
−n

dκ e2πimκg(κ)f(n+ κ). (125)
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Performing the limits iνn → ω+ iδ and ω → 0 for the rhs
of this equation and rewriting the result again as a sum
over winding numbers, we obtain

lim
ω→0

1
~ω

Im lim
iνn→ω+iδ

∞∑
k=−∞

g(k)f(|n+ k|) =

− ~β
2π

∞∑
k=−∞

g(k)
∂

∂k
f(|k + δ|) = −~β

2π
g(0)f ′(0). (126)

The sums in equation (124) may be performed exactly
with the help of integral representations of the psi function
and its derivatives [52]

ψ(z) =
∫ ∞

0

dt
(

e−t

t
− e−zt

1− e−t

)
(127)

and

ψ(n)(z) = (−1)n+1

∫ ∞
0

dt
tne−zt

1− e−t
· (128)

This way the high temperature expansion of the conduc-
tance may be evaluated to read

GSET = GclZ
−1
SET exp {−2[γ + ψ(1 + u)]/g}

×
{

1− ψ′(1 + u)(βEC/π
2)

+ [gσ(u) + τ(u)] (βEC/2π2)2 +O(βEC)3
}
.

(129)

The dependence on u = gβEC/2π2 is given in terms of
two auxiliary functions

σ(u) =
γ + ψ(1 + u)− uψ′(1 + u)

u2

+
∫ 1

0

dv
2v(1− vu)φ(v, 1, 1 + u)

(1− v)u
(130)

and

τ(u) = −
3γψ′(1 + u) + ψ(1 + u)[π

2

6 + 2ψ′(1 + u)]
u

− [ψ(1 + u) + γ]2

u2

+
π2

6u
ψ(1 + u) +

∫ 1

0

dv Ξ(u, v), (131)

with Lerch’s transcendent φ(z, u, v) [53] and

Ξ(u, v) =
ψ′(1 + u)
u ln(v)

+
1

(1− v)u

{
2vφ(v, 2, 1 + u)

+
1− 2vu

v

[
ln(v)φ(

1
v
, 1, 1 + u) + φ(

1
v
, 2, 1 + u)

]
+ vu

[
2 ln(v) ln(1− v) +

1
2

ln2(v) + 3Li2(1− v)
]

− 2(1− vu)
u

[ln(1 − v) + vφ(v, 1, 1 + u)]

}
.

(132)

The high temperature expansion of Z is straightforward
and reads

ZSET = 1 + gσ(u)(βEC/2π2)2 +O(βEC)3

+ 2C1 cos(2πng)
[
1 +O(βEC)2

]
, (133)

which combines with equation (129) to yield an analytical
expression for the high temperature conduction of a SET
valid for arbitrary tunneling conductance.

5.3 Discussion of results and comparison with
experimental data

In Figure 13 the normalized conductance GSET/Gcl is de-
picted in dependence on the dimensionless gate voltage ng

for various temperatures βEC. The quantum corrections
are more pronounced for lower temperatures where the
gate voltage dependence becomes more significant. The
oscillatory behavior of the conductance may be charac-
terized in terms of a maximum Gmax = GSET|ng=1/2 and
minimum Gmin = GSET|ng=0 linear conductance. We have
compared our findings for the maximum and minimum as
a function of temperature with recent experimental data
by Joyez et al. [16] for transistors with g = 0.6, 2.5 and 7.3.
As seen from Figure 14 the theory describes the high tem-
perature behavior of all junctions (results for g = 0.6 are
not shown) down to temperatures where the current starts
to modulate with the gate voltage. The parameters have
not been adjusted to improve the fit but coincide with
the values given in [16]. A recent Monte–Carlo study [51]
covering the entire range of temperatures has shown that
the small deviations between theory and experiment for
g = 7.3 near βEC = 1 arise from uncertainties in the pa-
rameter g. The estimate g = 7.3 based on the assumption
of a symmetrical transistor should be replaced by a value
near g = 10. We mention that the temperature depen-
dence of the conductance of the highly conducting SET
is not within reach of previous theoretical work. The re-
sults obtained should be useful for experimental studies of
even larger tunneling conductances since the predictions
remain valid for arbitrary values of g.

In the region of weak tunneling, g < 1, the quantity u
becomes small at high temperatures and we may replace
σ(u) and τ(u) by

σ(0) = 6ζ(3), τ(0) = π4/10. (134)

This gives for the conductance of a weakly conducting
SET

GSET

Gcl
=
[
1− βEC

3
+
(

1
15

+ g
3ζ(3)
2π4

)
× (βEC)2 +O(βEC)3

]
, (135)

in accordance with earlier work [54–56]. In the region of
strong tunneling, the quantity u is typically large even for
the highest temperatures explored experimentally and the
full expression (129, 133) must be used.
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pendence on dimensionless temperature for two dimensionless
parallel conductances g = 2.5 and 7.3 compared with experi-
mental data (symbols) by Joyez et al. [16].

6 Conclusions

In this article we have studied the conductance of nanofab-
ricated metallic circuits showing Coulomb blockade
phenomena. We have treated electron tunneling nonper-
turbatively based on a path integral expression derived in
Section 2. Then, the frequency dependent linear conduc-
tance of a single tunnel junction embedded in an electro-
magnetic environment was calculated in the semiclassical
approximation. We have shown that this approximation is
not only adequate for high temperatures but also in the
limit of large conductance. As far as the leading quan-
tum corrections are concerned, the tunnel junction was
shown to be described as an effective linear element with
an admittance that depends on the whole circuit. The
predictions for the dc conductance were compared with
recent experimental findings by two groups [17,18] and
we found good agreement in the semiclassical regime of
large conductance and/or high temperatures. Further, we
have shown that the low frequency behavior of the ac con-
ductance can be calculated in terms of a renormalized ca-
pacitance which shows a linear dependence on the inverse
temperature.

In Section 4 we applied the method to a linear array
of N tunnel junctions and determined the effect of the
environmental impedance on the conductance as well as
the influence of the array length N . For large N the con-
ductance dip becomes independent of the electromagnetic
environment in accordance with previous calculations [49].
For multi-junction circuits the configuration space of the
phase variables was shown to be a torus, and contribu-
tions of nonvanishing winding numbers become relevant if
one goes beyond the leading order quantum corrections.

The conductance of the single electron transistor was
determined in Section 5 by including nontrivial winding
numbers leading to the gate voltage dependence of the
conductance. The results were found to explain recent ex-
perimental data [16] for moderately low temperatures. For

lower temperatures the contribution of sluggon trajecto-
ries [36] has to be taken into account which was not elab-
orated here.

The semiclassical theory presented has features in
common with the quasiclassical Langevin equation put
forward in reference [35]. The Gaussian approximation un-
derlying this approach is consistent with the semiclassical
theory up to first order in βEC. Our results consistently
include higher order terms in βEC for arbitrary tunneling
conductances. Non-Gaussian fluctuations are particularly
relevant in the moderately large tunneling regime. The
analytical theory presented covers one edge in the tem-
perature/conductance plane, arbitrary conductance and
sufficiently high temperatures. Another edge is described
by the perturbative approach, arbitrary temperature and
sufficiently small tunneling conductance. Both theories
arise naturally from the formally exact representation of
the current-current correlator which may also serve as a
basis for Monte-Carlo simulations [51] that bridge between
the semiclassical and perturbative results.
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